Abstract

Agent-based distributed simulations are confronted with load imbalance problem, which significantly affects simulation performance. Dynamic load balancing can be effective in decreasing simulation execution time and improving simulation performance. The characteristics of multi-agent systems and time synchronization mechanisms make the traditional dynamic load balancing approaches not suitable for dynamic load balancing in agent-based distributed simulations. In this paper, an adaptive dynamic load balancing model in agent-based distributed simulations is proposed. Due to the complexity and huge time consuming for solving the model, a distributed approximate optimized scheduling algorithm with partial information (DAOSAPI) is proposed. It integrates the distributed mode, approximate optimization and agent set scheduling approach. Finally, experiments are conducted to verify the efficiency of the proposed algorithm and the simulation performance under dynamic agent scheduling. The experiments indicate that DAOSPI has the advantage of short execution time in large-scale agent scheduling, and the distributed simulation performance under this dynamic agent scheduling outperforms that under static random agent distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.