Abstract

Most conventional object tracking algorithms are implemented on general-purpose processors in software due to its great flexibility. However, the real-time performance is hard to achieve due to the inherent characteristics of the sequential processing of these processors. To tackle this issue, a reconfigurable system-on-chip (rSoC) platform with microprocessors and FPGAs is applied in this paper. To simplify the hardware/software interface, a Belief–Desire–Intention (BDI)-based multi-agent architecture is proposed as the unified framework. Then an agent-based task graph and two heuristic partitioning methods are proposed to partition the hardware and software on an rSoC platform. Compared to the module-based architecture, this BDI-based multi-agent architecture provides more efficiency, flexibility, autonomy, and scalability for the real-time tracking systems. A particle swarm optimization (PSO)-based object detection and tracking algorithm is applied to evaluate the proposed architecture. Extensive experimental results of object tracking demonstrate that the proposed architecture is efficient and highly robust with real-time performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.