Abstract

E-scooter sharing services have grown exponentially in many cities of the world within the last 10 years, mainly with the goal to serve first/last mile trips. Compared to other shared mobility modes (e.g., autonomous buses and electric taxis), for which Agent-based Models (ABMs) have been applied in many cases, just a few studies attempted to simulate e-scooter trips. This study aims to bridge the gap between ABMs and e-scooter sharing services by reviewing the existing ABMs and conducting a qualitative assessment. Initially, existing ABMs are described based on ten descriptors. To test suitability of each model for simulating e-scooter sharing services, we developed an evaluation checklist based on empirical findings. The ten criteria refer to the capabilities of each model to (a) adjust in new challenges via an open-source code, (b) model shared mobility modes, (c) perform large scale simulation, (d) describe spatiotemporal variation of demand, (e) simulate bicycle, (f) pedestrian, and (g) mixed traffic (h) consider socio-demographic characteristics, (i) integrate new choice models, and (j) model multimodal trips. Our results reveal the advantages and disadvantages of each model in simulating flexible transport modes and services. We end up with a dilemma or a scalability problem: to model e-scooter riding behavior in link level or e-scooter services in network level. It is concluded that the dual behavior of e-scooter users (pedestrian or vehicle) poses new challenges that can be met through the development of new extensions or hybrid simulation models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.