Abstract
Animal movement is a complex phenomenon where individual movement patterns can be influenced by a variety of factors including the animal’s current activity, available terrain and habitat, and locations of other animals. Motivated by modeling grizzly bear movement in the Greater Yellowstone Ecosystem, this article presents an agent-based model represented in a state-space framework for collective animal movement. The novel contribution of this work is a collective animal movement model that captures interactions between animals that can trigger changes in movement patterns, such as when a dominant grizzly bear may cause another subordinate bear to temporarily leave an area. The modeling framework enables learning different movement patterns through a state-space representation with particle-MCMC methods for fully Bayesian model fitting and the prediction of future animal movement behaviors.Supplementary materials accompanying this paper appear online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Agricultural, Biological and Environmental Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.