Abstract

Efficiently calibrating agent-based models (ABMs) to real data is an open challenge. This paper explicitly tackles parameter space exploration and calibration of ABMs by combining machine-learning and intelligent iterative sampling. The proposed approach “learns” a fast surrogate meta-model using a limited number of ABM evaluations and approximates the nonlinear relationship between ABM inputs (initial conditions and parameters) and outputs. Performance is evaluated on the Brock and Hommes (1998) asset pricing model and the “Islands” endogenous growth model Fagiolo and Dosi (2003). Results demonstrate that machine learning surrogates obtained using the proposed iterative learning procedure provide a quite accurate proxy of the true model and dramatically reduce the computation time necessary for large scale parameter space exploration and calibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.