Abstract

In the present work, an industrial polyester coil-coated steel was characterized by electrochemical impedance spectroscopy (EIS) during immersion in a 0.5 M NaCl solution for different temperatures (30, 40, 50 and 60 °C). The objective was to propose a methodology to follow the ageing of the coil-coated system, from the first stage of water uptake until the blistering appearance. Relevant parameters were extracted from the EIS diagrams to analyse ageing processes of the polymer and of the metal/polymer interface. Water uptake was determined from the high-frequency part of the impedance diagrams using a linear rule of mixtures. By increasing the temperature, both the water uptake kinetics and the water content in the coating increased. The effect of water uptake on the physical structure of the coating (plasticization) was discussed through the analysis of a time constant corresponding to the dielectric manifestation of the polymer glass transition.At 40, 50 and 60 °C, appearance of corrosion was detected on the impedance spectra by a decrease, at low frequency, of the impedance modulus and of the phase angle. For 60 °C, the corroded surface area as a function of time, was assessed from the EIS data analysis with adapted equivalent circuits. The corroded surface areas followed similar trend as blister surface areas determined from images analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.