Abstract

Ageing is a complex process with common and distinct features across tissues. Unveiling the underlying processes driving ageing in individual tissues is indispensable to decipher the mechanisms of organismal longevity. Caenorhabditis elegans is a well‐established model organism that has spearheaded ageing research with the discovery of numerous genetic pathways controlling its lifespan. However, it remains challenging to dissect the ageing of worm tissues due to the limited description of tissue pathology and access to tissue‐specific molecular changes during ageing. In this study, we isolated cells from five major tissues in young and old worms and profiled the age‐induced transcriptomic changes within these tissues. We observed a striking diversity of ageing across tissues and identified different sets of longevity regulators therein. In addition, we found novel tissue‐specific factors, including irx‐1 and myrf‐2, which control the integrity of the intestinal barrier and sarcomere structure during ageing respectively. This study demonstrates the complexity of ageing across worm tissues and highlights the power of tissue‐specific transcriptomic profiling during ageing, which can serve as a resource to the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.