Abstract
It is well known that mixtures of decreasing failure rate (DFR) distributions have the DFR property. A similar result is, of course, not true for increasing failure rate (IFR) distributions. In a recent note, Gurland and Sethuraman (1994, Technometrks36(4): 416–418) presented two examples where mixtures of IFR distributions show DFR property. In this paper, we present a general approach to study the mixtures of distributions and show that the failure rates of the unconditional and conditional distributions cross at most at one point. Mixtures of Weibull distribution with a shape parameter greater than 1 are examined in detail. This also enables us to study the monotonic properties of the mean residual life function of the mixture. Some examples are provided to illustrate the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Probability in the Engineering and Informational Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.