Abstract

In this paper, we review the general features of the out-of-equilibrium dynamics of spin glasses. We use this example as a guideline for a brief description of glassy dynamics in other disordered systems like structural and polymer glasses, colloids, gels etc. Starting with the simplest experiments, we discuss the scaling laws used to describe the isothermal aging observed in spin glasses after a quench down to the low temperature phase (these scaling laws are the same as established for polymer glasses). We then discuss the rejuvenation and memory effects observed when a spin glass is submitted to temperature variations during aging, and show some examples of similar phenomena in other glassy systems. The rejuvenation and memory effects and their implications are analyzed from the point of view of both energy landscape pictures and of real space pictures. We highlight the fact that both approaches point out the necessity of hierarchical processes involved in aging. We introduce the concept of a slowly growing and strongly temperature dependent dynamical correlation length, which is discussed at the light of a large panel of experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call