Abstract

The relationship between age and central noradrenergic neuronal activity of the paraventricular hypothalamic nucleus (PVH) was examined in 7- to 10-, 12- to 14-, and 30- to 36-wk-old Sprague-Dawley (SD), Wistar-Kyoto (WKY), and spontaneously hypertensive rats (SHR). As an index of noradrenergic activity, endogenous norepinephrine (NE) overflow was assessed utilizing a miniaturized push-pull cannula assembly in unanesthetized freely moving rats. NE overlow under basal, 56 mM K+ stimulation, and in response to pressor/depressor drugs, were examined in all three strains at all ages. Significant increases in basal and K(+)-stimulated overflow of endogenous NE from the PVH were observed in all ages of SHR compared with normotensive controls with the greatest percent increase occurring during the development of hypertension in SHR. In addition, a reciprocal relationship exists with respect to blood pressure and overflow of NE from the PVH such that increases/decreases in blood pressure elicit decreases/increases in NE overflow in all strains at all ages examined. However, developing hypertensive SHR exhibited attenuated decreases in overflow of NE from the PVH compared with age-matched controls and established hypertensive SHR. These results suggest that noradrenergic pathways of the PVH contribute to the development and maintenance of arterial pressure hemostasis and that enhanced central noradrenergic neuronal activity is greatest during the development of hypertension in SHR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call