Abstract

The stability of nitrate reductase (NR) in extracts from 4-, 5- and 6-day-old primary leaves of barley was examined. The half-time of loss of NR activity was found to be 358, 107 and 70 min, respectively. Bovine serum albumin (BSA) and phenylmethylsulphonylfluoride (PMSF) stabilized NR in extracts from 5- and 6-day-old primary leaves, but BSA was much more effective. The increased instability of NR with age correlated with increased conversion of the MW 203 000 NR complex to smaller NADH cytochrome c reductase (CR) species of MW 163 000, 61 000 and 40 000. The MW 163 000 CR species also possessed NR activity. BSA prevented and PMSF retarded the conversion of NR to the smaller CR species. The increased instability of NR in extracts from older tissue may be due to increased conversion of NR to smaller CR species. The ability of PMSF and BSA to stabilize NR and inhibit conversion of NR to the smaller CR species indicates that these phenomena are probably due to proteolytic degradation of NR. This suggestion is supported by the observation that trypsin cleaved NR to 3–4 S CR species and that cleavage was retarded by the presence of BSA. Endogenous proteinase attack at specific sites between domains of the barley NR complex may generate the CR species seen in barley extracts. The MW 40 000 CR species probably carries at least the FAD domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.