Abstract

The purpose of this study is to investigate age-dependent changes in the architecture and mechanical properties of tendon in TGF-beta inducible early gene-1 (TIEG) knockout mice. Wild-type and TIEG knockout mice, aged 1, 2, and 15 mo, were used. The mechanical properties of tail tendons isolated from these mice were determined using uniaxial tensile ramp (0.05 mm/s) and relaxation (5 mm/s) tests, with a strain of 10%. Mechanical parameters (Young's modulus from the ramp test; fast and static stresses from the relaxation test) were measured and recorded. The structure of the tail tendon fascicle was characterized by transmission electron microscopy. The results of the mechanical testing revealed no significant difference between the knockout and wild-type groups at 1 or 15 mo of age. However, the fascicles of the knockout mice at 3 mo of age exhibited decreased fast and static stresses compared with those of the wild-type mice. Electron microscopy revealed an increase in fibril size in the knockout mouse tendons relative to wild-type controls at 1 and 3 mo of age. These data indicate an important role for TIEG in tendon microarchitecture and strength in adult mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.