Abstract

Mitotic homologous recombination (HR) is critical for the repair of double-strand breaks, and conditions that stimulate HR are associated with an increased risk of deleterious sequence rearrangements that can promote cancer. Because of the difficulty of assessing HR in mammals, little is known about HR activity in mammalian tissues or about the effects of cancer risk factors on HR in vivo. To study HR in vivo, we have used fluorescent yellow direct repeat mice, in which an HR event at a transgene yields a fluorescent phenotype. Results show that HR is an active pathway in the pancreas throughout life, that HR is induced in vivo by exposure to a cancer chemotherapeutic agent, and that recombinant cells accumulate with age in pancreatic tissue. Furthermore, we developed an in situ imaging approach that reveals an increase in both the frequency and the sizes of isolated recombinant cell clusters with age, indicating that both de novo recombination events and clonal expansion contribute to the accumulation of recombinant cells with age. This work demonstrates that aging and exposure to a cancer chemotherapeutic agent increase the frequency of recombinant cells in the pancreas, and it also provides a rapid method for revealing additional factors that modulate HR and clonal expansion in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.