Abstract

Perinatal hypoxia can lead to multiple chronic neurological deficits, e.g., mental retardation, behavioral abnormalities, and epilepsy. Levetiracetam (LEV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an anticonvulsant drug with proven efficiency in treating patients with focal and generalized seizures. Rats were underwent hypoxia and seizures at the age of 10-12 postnatal days (pd). The ambient level and depolarization-induced exocytotic release of [3H]GABA (γ-aminobutyric acid) were analyzed in nerve terminals in the hippocampus and cortex during development at the age of pd 17-19 and pd 24-26 (infantile stage), pd 38-40 (puberty) and pd 66-73 (young adults) in norm and after perinatal hypoxia. LEV had no effects on the ambient [3H]GABA level. The latter increased during development and was further elevated after perinatal hypoxia in nerve terminals in the hippocampus during the whole period and in the cortex in young adults. Exocytotic [3H]GABA release from nerve terminals increased after perinatal hypoxia during development in the hippocampus and cortex, however this effect was preserved at all ages during blockage of GABA transporters by NO-711 in the hippocampus only. LEV realized its anticonvulsant effects at the presynaptic site through an increase in exocytotic release of GABA. LEV exerted more significant effect after perinatal hypoxia than in norm. Action of LEV was strongly age-dependent and can be registered in puberty and young adults, but the drug was inert at the infantile stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call