Abstract

Wild-type and single-transgenic (APP, PS1) and double-transgenic (APP+PS1) mice were studied at three different (3-, 12-, and 18-month-old) age periods. Transgenic mice had reflex eyelid responses like those of controls, but only 3-month-old mice were able to fully acquire conditioned eyeblinks, using a trace paradigm, whilst 12-month-old wild-type and transgenic mice presented intermediate values, and 18-month-old wild-type and transgenic mice were unable to acquire this type of associative learning. 18-month-old wild-type and transgenic mice presented a normal synaptic activation of CA1 pyramidal cells by the stimulation of Schaffer collaterals, but they did not show any activity-dependent potentiation of the CA3–CA1 synapse across conditioning sessions, as was shown by 3-month-old wild-type mice. Moreover, 18-month-old wild-type and transgenic mice presented a noticeable deficit in long-term potentiation evoked in vivo at the hippocampal CA3–CA1 synapse. The 18-month-old wild-type and transgenic mice also presented a significant deficit in prepulse inhibition as compared with 3-month-old controls. Except for results collected by prepulse inhibition, the above-mentioned deficits were not related with the presence of amyloid β deposits. Thus, learning and memory deficits observed in aged wild-type and transgenic mice are not directly related to the genetic manipulations or to the presence of amyloid plaques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call