Abstract

Age-associated impairment in antioxidant defense is an important cause of oxidative stress, and elderly individuals are usually associated with gut microbiota (GM) changes. Studies have suggested a potential relationship between the GM and changes in antioxidant defense in aging animals. Direct evidence regarding the impact of aging-associated shifts in GM on the antioxidant defense is lacking. The heart is a kind of postmitotic tissue, which is more prone to oxidative stress than the liver (mitotic tissue). To test and compare the influence of an aged GM on antioxidant defense changes in the heart and liver of the host, in this study, GM from young adolescent (5 weeks) or aged (20 months) mice was transferred to young adolescent (5 weeks) germ-free (GF) mice (N = 5 per group) by fecal microbiota transplantation (FMT). Four weeks after the first FMT was performed, fecal samples were collected for 16S rRNA sequencing. Blood, heart and liver samples were harvested for oxidative stress marker and antioxidant defense analysis. The results showed that mice that received young or aged microbiota showed clear differences in GM composition and diversity. Mice that received aged microbiota had a lower ratio of Bacteroidetes/Firmicutes in GM at the phylum level and an increased relative abundance of four GM genera: Akkermansia, Dubosiella, Alistipes and Rikenellaceae_RC9_gut_group. In addition, GM α-diversity scores based on the Shannon index and Simpson index were significantly higher in aged GM-treated mice. Oxidative stress marker and antioxidant defense tests showed that FMT from aged donors did not have a significant influence on malondialdehyde content in serum, heart and liver. However, the capacity of anti-hydroxyl radicals in the heart and liver, as well as the capacity of anti-superoxide anions in the liver, were significantly increased in mice with aged microbiota. FMT from aged donors increased the activities of Cu/Zn superoxide SOD (Cu/Zn-SOD), catalase (CAT) and glutathione-S-transferase in the heart, as well as the activity of Cu/Zn-SOD in the liver. Positive correlations were found between Cu/Zn-SOD activity and radical scavenging capacities. On the other hand, glutathione reductase activity and glutathione content in the liver were decreased in mice that received aged GM. These findings suggest that aged GM transplantation from hosts is sufficient to influence the antioxidant defense system of young adolescent recipients in an organ-dependent manner, which highlights the importance of the GM in the aging process of the host.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.