Abstract

Age-related changes in insulin action on diacylglycerol (DAG) degradation was studied in rat cerebral cortex synaptosomes. The generation of monoacylglycerol (MAG) and water soluble products (WSP, glycerol plus glycerol-3-phosphate) from DAG was studied in cerebral cortex (CC) synaptosomes from adult (4-month-old) and aged (28-month-old) rats. Additionally, the effect of porcine insulin and tyrosine phosphorylation was evaluated in the same group of animals. In this study we demonstrate that the age-related increase in WSP generation was accompanied by unmodified MAG levels. In the presence of diacylglycerol lipase (DAG lipase) inhibitor, RHC-80267, a lower inhibitory effect on MAG production was observed in CC synaptosomes from aged rats with respect to that in adult membranes. Under these experimental conditions, WSP formation was only diminished in aged membranes. Insulin stimulated MAG and WSP formation at long incubation times (30 min) in adult animals, while it had an inhibitory effect in aged animals. Insulin plus vanadate (as tyrosine-phosphatase inhibitor) inhibited MAG production at short incubation times whereas the same effect was observed in aged animals at long times of incubation. WSP formation was stimulated by insulin plus vanadate both in adult and aged animals at 30 min of incubation. Our results show that insulin differentially modulates MAG and WSP production from exogenous PA in CC synaptosomes from aged rats compared with adult rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.