Abstract

We used an integrated approach to describe soil organic matter (SOM) dynamics through known inorganic and organic components in aggregates of adjacent forested and cultivated Gleysolic soil. Mineral and SOM components were examined in water stable macroaggregates (>250 µm), microaggregates 1 (50–250 µm) and microaggregates 2 (<50 µm) fractions. SOM was characterized by pyrolysis-field ionization mass spectrometry (Py-FIMS), and soil minerals by X-ray diffraction analysis. The mean residence time of organic-C (OC) was determined using radiocarbon dating. OC turnover was determined using the natural abundance of native 13C and that derived from corn residue. We found that OC in macroaggregates was young (<100 yr), turned over in 14 yr, and consisted of OM typical of that found in tissues of plants and soil organisms. Chemical classes of compounds in macroaggregates consisted mainly of carbohydrates, lignin monomers and phenols, lignin dimers, lipids (alkanes, alkenes, n-alkyl esters), fatty acids, sterols, suberin and aliphatic and aromatic N compounds. The fast turnover time of OC in larger size aggregates supports the hypothesis that the initial decline in SOM after breaking native land is associated with losses of SOM stored in macroaggregates. OC in microaggregates 1 was young (<100 yr) and turned over in 61 yr. OC in microaggregates 2 was old, turned over in 275 yr, and consisted of highly humified macromolecules. Pyrolyzable SOM products representing plant and microbial components like lignin dimers, sterols, suberin and fatty acids were absent from microaggregates 2 containing old OC. The turnover time of OC correlated directly with the amount of smectite and Al extracted with ammonium oxalate, inversely with non-expandable phyllosilicates, and weakly with the total clay content of aggregates. Thermolabile and thermostable molecular components in aggregates indicated degree of association between SOM and clay minerals. Carbohydrates, peptides and alkylaromatics appeared to be less affected by abiotic stabilization reactions. Key words: Soil organic matter, turnover, mean residence time, inorganic soil components, mass spectrometry, macroaggregates and microaggregates

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.