Abstract
OBJECTIVESThe aim of this study was to estimate the age-specific effects of 8-hour maximum ozone levels on pneumonia in children and adolescents.METHODSWe performed quasi-Poisson regression analyses for individuals of 0-4 years, 5-9 years, 10-14 years, and 15-19 years of age using nationwide time-series data from the Korea (2011-2015). We constructed distributed lag linear models employing a generalized difference-in-differences method and controlling for other air pollutants.RESULTSA 10.0-parts per billion increase in 8-hour maximum ozone levels was associated with a higher risk of hospital admissions due to pneumonia at 0-4 (relative risk [RR], 1.02; 95% confidence interval [CI], 1.01 to 1.03) and 5-9 years of age (RR, 1.06; 95% CI, 1.04 to 1.08), but not at 10-14 (RR, 1.01; 95% CI, 0.98 to 1.04) or 15-19 years of age (RR, 1.01; 95% CI, 0.97 to 1.06). The association between ozone and hospital admissions due to pneumonia was stronger in cool seasons (from November to April) than in warm seasons (from May to October), but was similar between boys and girls.CONCLUSIONSShort-term exposure to ozone was associated with a higher risk of pneumonia at 0-4 years and 5-9 years of age, but not at 10-14 years or 15-19 years of age. Our findings can help identify vulnerable periods, determine the target populations for public health interventions, and establish air pollution standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.