Abstract
The analysis of copper (Cu) and zinc (Zn) along with their major serum carriers, albumin (Alb) and ceruloplasmin (Cp), could provide information on the capacity of humans to maintain homeostasis of metals (metallostasis). However, their relationship with aging, sex, body mass index, as well as with nutritional and inflammatory markers was never investigated in a large-scale study. Here, we report results from the European large-scale cross-sectional study MARK-AGE in which Cu, Zn, Alb, Cp, as well as nutritional and inflammatory parameters were determined in 2424 age-stratified participants (35-75 years), including the general population (RASIG), nonagenarian offspring (GO), a well-studied genetic model of longevity, and spouses of GO (SGO). In RASIG, Cu to Zn ratio and Cp to Alb ratio were higher in women than in men. Both ratios increased with aging because Cu and Cp increased and Alb and Zn decreased. Cu, Zn, Alb, and Cp were found associated with several inflammatory as well as nutritional biomarkers. GO showed higher Zn levels and higher Zn to Alb ratio compared to RASIG, but we did not observe significant differences with SGO, likely as a consequence of the low sample size of SGO and the shared environment. Our results show that aging, sex, body mass index, and GO status are characterized by different levels of Cu, Zn, and their serum carrier proteins. These data and their relationship with inflammatory biomarkers support the concept that loss of metallostasis is a characteristic of inflammaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.