Abstract

BackgroundTaenia taeniaeformis and the related zoonotic cestode Echinococcus multilocularis both infect the water vole Arvicola terrestris. We investigated the effect of age, spatio-temporal and season-related factors on the prevalence of these parasites in their shared intermediate host. The absolute age of the voles was calculated based on their eye lens weights, and we included the mean day temperature and mean precipitation experienced by each individual as independent factors.ResultsOverall prevalences of E. multilocularis and T. taeniaeformis were 15.1% and 23.4%, respectively, in 856 A. terrestris trapped in the canton Zürich, Switzerland. Prevalences were lower in young (≤ 3 months: E. multilocularis 7.6%, T. taeniaeformis 17.9%) than in older animals (>7 months: 32.6% and 34.8%). Only 12 of 129 E. multilocularis-infected voles harboured protoscoleces. Similar proportions of animals with several strobilocerci were found in T. taeniaeformis infected voles of <5 months and ≥5 months of age (12.8% and 11.9%). Multivariate analyses revealed strong spatio-temporal variations in prevalences of E. multilocularis. In one trapping area, prevalences varied on an exceptional high level of 40.6-78.5% during the whole study period. Low temperatures significantly correlated with the infection rate whereas precipitation was of lower importance. Significant spatial variations in prevalences were also identified for Taenia taeniaeformis. Although the trapping period and the meteorological factors temperature and precipitation were included in the best models for explaining the infection risk, their effects were not significant for this parasite.ConclusionsOur results demonstrate that, besides temporal and spatial factors, low temperatures contribute to the risk of infection with E. multilocularis. This suggests that the enhanced survival of E. multilocularis eggs under cold weather conditions determines the level of infection pressure on the intermediate hosts and possibly also the infection risk for human alveolar echincoccosis (AE). Therefore, interventions against the zoonotic cestode E. multilocularis by deworming foxes may be most efficient if conducted just before and during winter.

Highlights

  • Taenia taeniaeformis and the related zoonotic cestode Echinococcus multilocularis both infect the water vole Arvicola terrestris

  • We investigated the influence of temporal and spatial factors on the prevalence of E. multilocularis in A. terrestris, the most abundant intermediate host in the city of Zürich, Switzerland

  • The overall prevalence rate of E. multilocularis was 15.1% (12.7%17.6%), and protoscoleces were found in 12 animals corresponding to 1.4% (0.7%-2.4%) of all studied animals or 9.3% (4.9%-15.7%) of the E. multilocularis-positive animals

Read more

Summary

Introduction

Taenia taeniaeformis and the related zoonotic cestode Echinococcus multilocularis both infect the water vole Arvicola terrestris. Population dynamics of organisms in temperate zones are generally shaped by seasonal variations. Parasites living within their hosts are protected from the direct impact of season-related factors like temperature or humidity but they usually have free living stages that can directly be affected by adverse environmental conditions. The understanding of how meteorological factors and seasonal changes affect the population dynamics of zoonotic parasites can contribute to better understand. In many parts of Europe, the zoonotic fox tapeworm Echinococcus multilocularis has benefited from increasing fox (Vulpes vulpes) populations and the invasion of foxes into urbanized areas during the last two decades [1,2,3,4]. There is a need to better understand the factors which affect the transmission dynamics of this parasite

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call