Abstract
Adult progenitor cells reside in specialized microenvironments which maintain their undifferentiated cell state and trigger regenerative responses following injury. Although these environments are well described in several tissues, the cellular components that comprise the cardiac environment where progenitor cells are located remain unknown. Here we use Bmi1CreERT and Bmi1GFP mice as genetic tools to trace cardiac damage-responsive cells throughout the mouse lifespan. In adolescent mice, Bmi1+ damage-responsive cells are broadly distributed throughout the myocardium. In adult mice, however, Bmi1+ cells are confined predominately in perivascular areas with low levels of reactive oxygen species (ROS) and their number decline in an age-dependent manner. In vitro co-culture experiments with endothelial cells supported a regulatory role of the endothelium in damage-responsive cell behavior. Accordingly, in vivo genetic decrease of ROS levels in adult heart disengaged Bmi1+ cells from the cardiovascular network, recapitulating an adolescent-like Bmi1 expression profile. Thus, we identify cardiac perivascular regions as low-stress microenvironments that favor the maintenance of adult damage-responsive cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.