Abstract
Brain aging is accompanied by an accumulation of damaged proteins, which results from deterioration of cellular quality control mechanisms and decreased protein degradation. The ubiquitin-proteasome system (UPS) is the primary proteolytic mechanism responsible for targeted degradation. Recent work has established a critical role of the UPS in memory and synaptic plasticity, but the role of the UPS in age-related cognitive decline remains poorly understood. Here, we measured markers of UPS function and related them to fear memory in rats. Our results show that age-related memory deficits are associated with reductions in phosphorylation of the Rpt6 proteasome regulatory subunit and corresponding increases in lysine-48 (K48)-linked ubiquitin tagging within the basolateral amygdala. Increases in K48 polyubiquitination were also observed in the medial prefrontal cortex and dorsal hippocampus. These data suggest that protein degradation is a critical component of age-related memory deficits. This extends our understanding of the relationship between the UPS, aging, and memory, which is an important step toward the prevention and treatment of deficits associated with normal cognitive aging and memory-related neurodegenerative diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.