Abstract
Sarcopenia, the age-related loss of muscle mass, is a highly-debilitating consequence of aging. In this investigation, we show sarcopenia is greatly reduced by muscle-specific overexpression of calpastatin, the endogenous inhibitor of calcium-dependent proteases (calpains). Further, we show that calpain cleavage of specific structural and regulatory proteins in myofibrils is prevented by covalent modification of calpain by nitric oxide (NO) through S-nitrosylation. We find that calpain in adult, non-sarcopenic muscles is S-nitrosylated but that aging leads to loss of S-nitrosylation, suggesting that reduced S-nitrosylation during aging leads to increased calpain-mediated proteolysis of myofibrils. Further, our data show that muscle aging is accompanied by loss of neuronal nitric oxide synthase (nNOS), the primary source of muscle NO, and that expression of a muscle-specific nNOS transgene restores calpain S-nitrosylation in aging muscle and prevents sarcopenia. Together, the findings show that in vivo reduction of calpain S-nitrosylation in muscle may be an important component of sarcopenia, indicating that modulation of NO can provide a therapeutic strategy to slow muscle loss during old age.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.