Abstract

Speech comprehension is often challenged by increased background noise, but can be facilitated via the semantic context of a sentence. This predictability gain relies on an interplay of language-specific semantic and domain-general brain regions. However, age-related differences in the interactions within and between semantic and domain-general networks remain poorly understood. Using functional neuroimaging, we investigated commonalities and differences in network interactions enabling processing of degraded speech in healthy young and old participants. Participants performed a sentence repetition task while listening to sentences with high and low predictable endings and varying intelligibility. Stimulus intelligibility was adjusted to individual hearing abilities. Older adults showed an undiminished behavioural predictability gain. Likewise, both groups recruited a similar set of semantic and cingulo-opercular brain regions. However, we observed age-related differences in effective connectivity for high predictable speech of increasing intelligibility. Young adults exhibited stronger connectivity between regions of the cingulo-opercular network and between left insula and the posterior middle temporal gyrus. Moreover, these interactions were excitatory in young adults but inhibitory in old adults. Finally, the degree of the inhibitory influence between cingulo-opercular regions was predictive of the behavioural sensitivity towards changes in intelligibility for high predictable sentences in older adults only. Our results demonstrate that the predictability gain is relatively preserved in older adults when stimulus intelligibility is individually adjusted. While young and old participants recruit similar brain regions, differences manifest in underlying network interactions. Together, these results suggest that ageing affects the network configuration rather than regional activity during successful speech comprehension under challenging listening conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.