Abstract

Angiotensin II (ANG II) is locally produced in human skin and contributes to the reflex vasoconstriction (VC) response in aged but not young skin. We hypothesized that the exogenous ANG II-mediated VC response would be greater in older adults and would be affected by inhibition of adrenoreceptor or ANG II type II receptor (AT2R) pathways. Three microdialysis (MD) fibers were placed in the forearm skin of 11 young (26 ± 3 yr) and 11 older (68 ± 4 yr) individuals for perfusion of 1) Ringer solution (control), 2) adrenoreceptor blockade with yohimbine + propranolol, and 3) AT2R inhibition with PD-123319. ANG II was then added to the perfusates at eight graded dose concentrations ranging from 10-10 to 10-3 M. Laser Doppler flux was measured at each MD site, and cutaneous vascular conductance (CVC) was calculated as CVC = laser Doppler flux/mean arterial pressure and normalized to baseline CVC values collected before ANG II perfusion (%ΔCVCbaseline). At the control site, older adults (-34 ± 4%ΔCVCbaseline) exhibited a greater peak VC compared with young adults (-22 ± 2%ΔCVCbaseline, P < 0.05), which was attenuated with adrenoreceptor blockade. Young skin exhibited a vasodilation in response to lower ANG II doses that was inhibited with AT2R inhibition. AT2R inhibition also increased the VC response to higher ANG II doses such that young skin responded similarly to older skin. These results indicate that ANG II has a greater VC influence in older than young individuals. Furthermore, ANG II may be affecting multiple targets, including adrenergic and AT2R pathways. NEW & NOTEWORTHY Intradermal perfusion of successive doses of angiotensin II (ANG II) revealed a role for ANG II type II receptors and dose-dependent, ANG II-mediated vasodilation in young but not older adults. In contrast, older adults exhibited greater vasoconstriction for a given dose of ANG II. The increased vasoconstriction in older adults was subsequently blunted with adrenoreceptor blockade, which indicates an interaction between ANG II and adrenergic signaling pathways in the cutaneous microcirculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call