Abstract

Purpose of this investigation was to study the circadian biologic rhythm dysregulation of intraocular pressure (IOP), blood pressure (BP), and heart rate (HR) in primary open-angle glaucoma (POAG) patients of different age groups. Objectives: to reveal the desynchronosis pattern of biologic rhythm parameters in POAG patients, to study the influence of peptide bioregulatory complex on the synchronization of chosen parameters, to investigate correction possibilities from the perspective of the optic nerve tolerance enhancement, ischemia decrease and ocular perfusion improvement.Materials and methods. At the first stage, we performed a representative selection of patients with BP, HR and IOP dysregulation among POAG patients and subjects without glaucoma of corresponding age (n = 330). For mathematic justification of the desynchronosis identification, we used cosinor-analysis of circadian changes of functional indices. At the second stage, we performed a randomized study with parallel comparison groups masked for the investigator estimating the results. Patients with revealed desynchronosis (n = 56) were randomly divided into two groups for comparison. The main group consisted of 27 patients who, in addition to systemic and local pressure-lowering therapy, received 1 tablet of epifamin (Longvi-Farm, Russia) 3 times a day for 30 days; сortexin (Geropharm, Russia) 10 mg daily for 10 days; retinalamin (Geropharm, Russia) 5 mg daily as peribulbar injections for 10 days. 29 control group patients received traditional treatment (vitamins, spasmolytics, antioxydants) together with local and systemic pressure-lowering therapy. In compared groups, we calculated the tolerant pressure level, investigated the dynamics of retinal sensitivity mean deviation (MD), registrated the oscillatory potentials (OP) with the OP index calculation.Results. In elderly patients with glaucoma, significant changes of the temporal order of physiological parameters were found (deviation of IOP daily rhythm curves, systolic blood pressure (SBP), diastolic blood pressure (DBP), and hemodynamic indices).Conclusion. Through hemodynamic, nootropic, neurotrophic effects of the investigated bioregulatory peptide complex, the optic nerve tolerance to the stress influence of IOP, SBP and DBP asynchronous fluctuations increased, and ocular perfusion enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call