Abstract

Docosahexaenoic acid (DHA), an n-3 fatty acid, is the major polyunsaturate in rod outer segments. The effect of long-term n-3 fatty acid deficiency on rod and cone phototransduction was investigated in the rhesus monkey. From birth to approximately = 9 years rhesus monkeys were fed an n-3-deficient diet (n = 9) known to reduce retinal DHA by 80%. Monkeys in the control group (n = 12) received either 8% alpha-linolenic acid (ALA) or 0.6% DHA, both of which support normal retinal DHA levels. None of the diets contained carotenoids. Photoactivation kinetics were assessed from the rate of increase and a P3 model fit of the ERG a-wave. Maximal cone amplitude and sensitivity were measured from the cone a-wave at 4 ms. The rod photoresponse and rod recovery were derived by using a paired flash Rod sensitivity was reduced by 40% in the n-3-deficient monkeys at 9 but not 4.5 years. The onset of the rising phase of the photoresponse was significantly delayed (P < 0.004) at 9 years. Rod recovery was delayed by 20% in n-3-deficient monkeys at both ages, but only for bright saturating flashes. Cone phototransduction was not altered by n-3 deficiency. Long-term dietary n-3 deficiency in the rhesus monkey was associated with two changes in retinal function. First, there was a delay in rod recovery that has remained relatively constant throughout life. Second, there was an age-dependent loss in rod phototransduction sensitivity; the lack of dietary carotenoids may have contributed to this decline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.