Abstract

Here, we chronologically analyzed age-associated changes of cAMP- and MAPK-signaling in Leydig cells (LCs) in relation with decreased testosterone (T) production. In Wistar rats, decreased serum T observed in 12 to 24-month-old rats was not related to decreased serum LH concentration but to reduced luteinizing hormone receptor (Lhr/LHR) and time-coordinated reduction of steroidogenic gene expression (decreased Cyp11a1, Cyp17a1 in 12-month-old rats followed by decreased Star/StAR, Hsd3b/HSD3B, Hsd17b4, and increased Cyp19a1 later in life). The predecessors of age-related changes noted in LCs from 6 to 12-month-old rats were increased level of soluble adenylate cyclase (Adcy/AC) 10, increased JNK phosphorylation but suppressed P38 MAPK. At approximately the same time changed mRNA abundance for transcription factors important for steroidogenesis was detected (increased Nur77 and decreased Sf1, Dax1). Aging caused biphasic expression pattern of ERK1/2 and Nur77: increased in 12-month but decreased in LCs from 24-month-old rats. Further, decreased basal cAMP level observed from 12 to 24th month coincidence with increased expression of cAMP-specific phosphodiesterase (Pde)4a, Pde4b and regulatory subunit of protein kinase A (Prkar/PKAR). Exposing of senescent LCs to permeable cAMP-analog improved transcription of Sf1, Nur77, Star, Cyp11a1,Cyp17a1, but without effect on aging pattern of Dax1, Pde4a/b, Prkar2a, Lhr and MAPK genes. Collectively, results indicated that age-related LC dysfunction is accompanied with changes in MAPK and cAMP signaling and coordinated reduction in the expression of many of the genes that participate in T synthesis. The predecessors of aged-related changes are increased ratio of pJNK/JNK, AC10 and decreased P38 level in LCs from 6-month-old rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call