Abstract

Age-related changes in the relative contribution of voltage-dependent calcium channel (VDCC) subtypes to depolarization-induced Ca(2+) influx and in the density of VDCC subtypes in cortical synapses were investigated using synaptosomes and their membrane preparations from brain cortices of Wistar rats. The relative contribution of VDCC subtypes to Ca(2+) influx was determined by measuring the inhibition of depolarization-induced Ca(2+) influx with four VDCC subtype-specific peptide blockers. In adult rat synaptosomes, L-, N-, P- and Q-type channels accounted for 24, 32, 27 and 12% of the total Ca(2+) influx, respectively. Brain aging significantly reduced the relative contributions of N- and P-type channels and increased the contribution of the channels resistant to the four blockers used. The densities of VDCC subtypes, determined by binding experiments using radiolabeled PN200 -110, omega-conotoxin GVIA and omega-conotoxin MVIIC, were found to be significantly decreased in aged synaptic plasma membranes. On the contrary, the dissociation constants of the blockers were not changed except for PN200-110-sensitive L-type channels. These results suggest that aging alters the relative contributions of each VDCC subtype to depolarization-induced Ca(2+) influx and decreases the number of VDCCs in rat brain cortical synapses. These changes in VDCCs may lead to age-related hypofunction of synaptic neurotransmission in brain cortices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call