Abstract

As mammals age, their neuromuscular junctions (NMJs) change their form, with an increasingly complex system of axonal branches innervating increasingly fragmented regions of postsynaptic differentiation. It has been suggested that this remodeling is associated with impairment of neuromuscular transmission and that this contributes to age-related muscle weakness in mammals, including humans. Here, we review previous work on NMJ aging, most of which has focused on either structure or function, as well as a new study aimed at seeking correlation between the structure and function of individual NMJs. While it is clear that extensive structural changes occur as part of the aging process, it is much less certain how, if at all, these are correlated with an impairment of function. This leaves open the question of whether loss of NMJ function is a significant cause of age-related muscle weakness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.