Abstract

The present study examined the effect of age on the spontaneous motor rhythms of mice during wheel running. The spontaneous motor tempo (SMT) of wheel running was measured for the P8 strain of the senescence-accelerated mouse (SAMP8) by recording the sequence of time intervals (measured in milliseconds) for successive revolutions of a run-wheel over the course of 16 days. Analyses of the distribution of interrevolution intervals of 2-, 7-, and 12-month-old SAMP8 revealed an age-related slowing of wheel running and a corresponding increase in variability consistent with Weber's law. All three age groups also demonstrated a practice effect over the course of testing best described by a power law. These findings provide evidence of age-related changes in the spontaneous motor rhythms of the SAMP8 that occur as early as 7 months of age. The results are consistent with age-related changes in human subjects and suggest that spontaneous wheel-running behavior in rodents may be a good model for studying SMT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call