Abstract

Quantitative susceptibility mapping (QSM) has shown great potential for revealing the layer structure of articular cartilage based on the laminar susceptibility difference at different depths. However, more information is needed on the effects of age on the spatial distribution of magnetic susceptibility in human cartilage. To assess the ability of QSM to quantify the age-related differences in depth-wise cartilage susceptibility values in healthy populations. Prospective. A total of 94 healthy asymptomatic subjects in three age cohorts: 19-30 (n=36, 20 males), 31-50 (n=45, 27 males), and 51-66 years (n=13, 7 males). 3D gradient echo sequences at 3.0 T. Four cartilage compartments were analyzed, including the central lateral/medial femur (cLF/cMF) and the lateral/medial tibia (LT/MT). The spatial susceptibility profile and the corresponding 95% confidence interval (CI) of each age cohort were obtained as functions of the normalized distance from the bone-cartilage interface to the cartilage surface (cartilage depth from 0.0 to 1.0). The relationship between age and cartilage thickness of each cartilage subregion was tested by Pearson correlation with P < 0.05 considered significant. Cartilage depths with separations of 95% CIs were considered to have significant susceptibility differences between two age cohorts with a Bonferroni-corrected P < 0.05. The cartilage thickness did not change significantly with age (P value range: 0.06-0.85). Susceptibilities were significantly higher in the 51-66-year-olds compared with the 31-50-year-olds in the deep layer of cMF (cartilage depth: 0.0-0.22) and LT (0.05-0.28). Susceptibilities were significantly higher in the 51-66-year-olds compared with the 19-30-year-olds near the cartilage-bone interface of cMF (0.0-0.34), cLF (0.0-0.28), and LT (0.0-0.58). There were also significantly higher susceptibilities in the 31-50-year-olds compared with the 19-30-year-olds in the deeper regions of cMF (0.26-0.57), cLF (0.0-0.40), and LT (0.07-0.80). Age-related susceptibility changes in the deeper regions of knee cartilage were observed using QSM. 2 TECHNICAL EFFICACY: Stage 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call