Abstract
ObjectiveWhether there are age-related changes in slow wave activity (SWA) rise time, a marker of homeostatic sleep drive, is unknown. Additionally, although sleep medication use is highest among older adults, the quantitative electroencephalographic (EEG) profile of the most commonly prescribed sleep medication, zolpidem, in older adults is also unknown. We therefore quantified age-related and regional brain differences in sleep EEG with and without zolpidem. MethodsThirteen healthy young adults aged 21.9 ± 2.2 years and 12 healthy older adults aged 67.4 ± 4.2 years participated in a randomized, double-blind, within-subject study that compared placebo to 5 mg zolpidem. ResultsOlder adults showed a smaller rise in SWA and zolpidem increased age-related differences in SWA rise time such that age differences were observed earlier after latency to persistent sleep. Age-related differences in EEG power differed by brain region. Older, but not young, adults showed zolpidem-dependent reductions in theta and alpha frequencies. Zolpidem decreased stage 1 in older adults and did not alter other age-related sleep architecture parameters. ConclusionsSWA findings provide additional support for reduced homeostatic sleep drive or reduced ability to respond to sleep drive with age. Consequences of reduced power in theta and alpha frequencies in older adults remain to be elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.