Abstract
We studied alterations of chest geometry during conventional cardiopulmonary resuscitation in anesthetized immature swine. Pulsatile force was applied to the sternum in increments to determine the effects of increasing compression on chest geometry and intrathoracic vascular pressures. In 2-wk- and 1-mo-old piglets, permanent changes in chest shape developed due to incomplete recoil of the chest along the anteroposterior axis, and large intrathoracic vascular pressures were generated. In 3-mo-old animals, permanent chest deformity did not develop, and large intrathoracic vascular pressures were not produced. We propose a theoretical model of the chest as an elliptic cylinder. Pulsatile displacement along the minor axis of an ellipse produces a greater decrease in cross-sectional area than displacement of a circular cross section. As thoracic cross section became less circular due to deformity, greater changes in thoracic volume, and hence pressure, were produced. With extreme deformity at high force, pulsatile displacement became limited, diminishing pressure generation. We conclude that changes in chest geometry are important in producing intrathoracic intravascular pressure during conventional cardiopulmonary resuscitation in piglets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.