Abstract

In the inquiry on the age related dietary assessment of an organism, knowledge of the distributional patterns of food intake throughout the entire life span is very important, however, age related nutritional studies often lack robust feeding quantification methods due to their limitations in obtaining short-term food-intake measurements. In this study, we developed and standardized a capillary method allowing precise life-time measurements of food consumption by individual adult medflies, Ceratitis capitata (Diptera: Tephritidae), under laboratory conditions. Protein or sugar solutions were offered via capillaries to individual adults for a 5 h interval daily and their consumption was measured, while individuals had lifetime ad libitum access to sugar or protein, respectively, in solid form. Daily egg production was also measured. The multivariate data-set (i.e., the age-dependent variations in the amount of sugar and protein ingestion and their relation to egg production) was analyzed using event history charts and 3D interpolation models. Maximum sugar intake was recorded early in adult life; afterwards, ingestion progressively dropped. On the other hand, maximum levels of protein intake were observed at mid-ages; consumption during early and late adult ages was kept at constant levels. During the first 30 days of age, type of diet and sex significantly contributed to the observed difference in diet intake while number of laid eggs varied independently. Male and female adult longevity was differentially affected by diet: protein ingestion extended the lifespan, especially, of males. Smooth surface models revealed a significant relationship between the age dependent dietary intake and reproduction. Both sugar and protein related egg-production have a bell-shaped relationship, and the association between protein and egg-production is better described by a 3D Lorenzian function. Additionally, the proposed 3D interpolation models produced good estimates of egg production and diet intake as affected by age, providing us with a reliable multivariate analytical tool to model nutritional trends in insects, and other organisms, and their effect upon life history traits. The modeling also strengthened the knowledge that egg production is closely related to protein consumption, as suggested by the shape of the medfly reproduction-response function and its functional relationship to diet intake and age.

Highlights

  • During the past, considerable attention has been devoted to the analysis of food consumption and appetite on groups of animals or on individual organisms (Kogan and Parra, 1981; Cullison, 1982; Gomez-Amaro et al, 2015)

  • We developed and standardized a methodology suitable for measuring individual daily food ingestion of the adult C. capitata throughout life span

  • This method enables high precision measuring of daily food intake while at the same time allows to relate intake to individual egg production in fruit flies, which has rarely been concomitantly measured

Read more

Summary

Introduction

Considerable attention has been devoted to the analysis of food consumption and appetite on groups of animals or on individual organisms (Kogan and Parra, 1981; Cullison, 1982; Gomez-Amaro et al, 2015). The advantage in the use of insects as model-organisms is related to their short generation time, ability to produce large quantities of organisms in a very short period, relative simplicity in their genetic manipulation and development of genetic-lines and close similarity with metabolic pathways of vertebrates, relatively low-costs, and minimal ethical questions of experimentation (Schneider, 2000). Due to these traits, insects can serve as excellent model-organisms to explore questions of nutrition and prandial behavior. Prandiology, refers to the study of specific parameters such as the size and frequency of meals (see Ja et al, 2007)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call