Abstract

For the first time we calculate quantitatively the influence of inhomogeneities on the global expansion factor by averaging the Friedmann equation. In the framework of the relativistic second-order Zel'dovich-approximation scheme for irrotational dust we use observational results in the form of the normalization constant fixed by the Cosmic Background Explorer results and we check different power spectra, namely, for adiabatic cold dark matter (CDM), isocurvature CDM, hot dark matter, warm dark matter, strings, and textures. We find that the influence of the inhomogeneities on the global expansion factor is very small. So the error in determining the age of the universe using the Hubble constant in the usual way is negligible. This does not imply that the effect is negligible for local astronomical measurements of the Hubble constant. Locally the determination of the redshift-distance relation can be strongly influenced by the peculiar velocity fields due to inhomogeneities. Our calculation does not consider such effects, but is constrained to comparing globally homogeneous and averaged inhomogeneous matter distributions. In addition we relate our work to previous treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.