Abstract

The first Sm-Nd and Rb-Sr dates were obtained for the dynamometamorphic processes associated with the origin and evolution of the Moncha Tundra fault, Kola Peninsula, which separates two large Early Paleoproterozoic layered intrusions: the Monchegorsk Ni-bearing mafic-ultramafic intrusion and the Main Range massif of predominantly mafic composition. The fault belongs to the regional Central Kola fault system, whose age was unknown. The material for the dating included metamorphic minerals from blastomylonitic rocks recovered by structural borehole M-1. Mineralogical thermobarometry suggests that the metamorphism occurred at 6.9–7.6 kbar and 620–640°C, which correspond to the amphibolite facies. The Sr and Nd isotopic systems were re-equilibrated, and their study allowed us to date the dynamometamorphic processes using mineral isochrons. It was established that the Moncha Tundra fault, and, respectively, the whole Central Kola fault system appeared in the middle of Paleoproterozoic ∼2.0–1.9 Ga, simultaneously with the Svecofennian orogen in the central part of the region and the Lapland-Kola orogen in its northeastern part. Another episode of dynamometamorphism that occurred at 1.60–1.65 Ga is envisaged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call