Abstract
We consider a scenario where a monitor is interested in being up to date with respect to the status of some system which is not directly accessible to this monitor. However, we assume a source node has access to the status and can send status updates as packets to the monitor through a communication system. We also assume that the status updates are generated randomly as a Poisson process. The source node can manage the packet transmission to minimize the age of information at the destination node, which is defined as the time elapsed since the last successfully transmitted update was generated at the source. We use queuing theory to model the source-destination link and we assume that the time to successfully transmit a packet is a gamma distributed service time. We consider two packet management schemes: LCFS (Last Come First Served) with preemption and LCFS without preemption. We compute and analyze the average age and the average peak age of information under these assumptions. Moreover, we extend these results to the case where the service time is deterministic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.