Abstract
Age of information (AoI) is a performance metric that captures the freshness of status updates. While AoI has been studied thoroughly for point-to-point links, the impact of modern random-access protocols on this metric is still unclear. In this paper, we extend the recent results by Munari to prioritized random access where devices are divided into different classes according to different AoI requirements. We consider the irregular repetition slotted ALOHA protocol and analyze the AoI evolution by means of a Markovian analysis following similar lines as in Munari (2021). We aim to design the protocol to satisfy the AoI requirements for each class while minimizing the power consumption. To this end, we optimize the update probability and the degree distributions of each class, such that the probability that their AoI exceeds a given threshold lies below a given target and the average number of transmitted packets is minimized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.