Abstract
Competing evolutionary models and age of eclogite facies metamorphism, Mesoarchaean, Neoarchaean or Palaeoproterozoic, of the subducted Mesoarchaean oceanic crust (Salma association, Belomorian Eclogite Province) are discussed on a basis of systematic analysis of previously known and newly obtained data. Four main types of zircons were distinguished in eclogites: porous crystals with numerous inclusions from eclogite-metagabbro; wide-rimmed zircons with relict porous cores similar to previous type separated from garnetites; round-oval zircons from eclogite-metagabbronorite that are characteristic for granulite facies rocks and zircons with euhedral oscillatory zoning cores and oval grains that are characteristic for the eclogite facies pillow basalts. Regular changes in REE patterns and in crystallization-recrystallization temperatures of certain domains of the porous zircons display sequence of magmatic and metamorphic events. The ∼ 2.9 Ga domains retain magmatic-type REE patterns. Low- and medium-temperature inclusions of prenite, pumpelliite, albite, actinolite, chlorite, diaspore and saponite in garnet and abundant microinclusions of the prenite-pumpelliite and greenschist facies in zircons with LREE-MREE enrichment indicate hydrothermal metamorphism in the spreading ridge and ocean floor at 2.9–2.82 Ga. Disappearance of Ce positive anomaly from REE pattern in zircon, change negative to positive Eu anomaly and LREE-MREE enrichment caused by plagioclase removal and replacement of rutile with sphene evidence eclogite facies metamorphism linked with subduction at 2.82–2.78 Ga. Temperatures in the 700–900 °C range of the round-oval zircons from eclogite-metagabbronorite records the Neoarchaean granulite facies overprint at 2.77–2.70 Ga. Series of the high temperature Palaeoprpoterozoic events was terminated by 2.1–1.7 Ga event marked by the rims with lowest REE that frame all types of zircons. Change from positive to negative Eu anomaly, retrieval of negative Ce anomaly indicate the presence of plagioclase, reduction type of fluids and low water activity characteristic of high-temperature metamorphism under stretching condition and mantle-plume activity. The deep reworking of the Sm-Nd isotope system in the Belomorian tectonic province at ∼ 1.9 Ga, including the Salma eclogite association, was caused by the enormous crustal heating that spread from the Lapland granulite belt southward. Radiogenic 176Hf enrichment of 1.9 Ga zircon indicates recrystallization of a long-existed garnet with release of significant amount of 176Hf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.