Abstract

One of the key questions in the study of human language acquisition is the extent to which the development of neural processing networks for different components of language are modulated by exposure to linguistic stimuli. Sign languages offer a unique perspective on this issue, because prelingually Deaf children who receive access to complex linguistic input later in life provide a window into brain maturation in the absence of language, and subsequent neuroplasticity of neurolinguistic networks during late language learning. While the duration of sensitive periods of acquisition of linguistic subsystems (sound, vocabulary, and syntactic structure) is well established on the basis of L2 acquisition in spoken language, for sign languages, the relative timelines for development of neural processing networks for linguistic sub-domains are unknown. We examined neural responses of a group of Deaf signers who received access to signed input at varying ages to three linguistic phenomena at the levels of classifier signs, syntactic structure, and information structure. The amplitude of the N400 response to the marked word order condition negatively correlated with the age of acquisition for syntax and information structure, indicating increased cognitive load in these conditions. Additionally, the combination of behavioral and neural data suggested that late learners preferentially relied on classifiers over word order for meaning extraction. This suggests that late acquisition of sign language significantly increases cognitive load during analysis of syntax and information structure, but not word-level meaning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call