Abstract

The mechanisms leading to the formation of bedding-parallel calcite beef veins have been widely debated, with discussions centered on timing or burial depth of vein generation, source of the vein material, driving forces for vein initiation and widening, and growth direction and mechanism. To address these issues, a comprehensive study of drill core samples containing beef veins in the mature Eocene lacustrine Hetaoyuan Formation in the Biyang Sag, Nanxiang Basin, China was undertaken through a combination of microstructural observation, isotopic geochronological, geochemical, and fluid inclusion analyses, as well as basin modeling. X-ray diffraction and total organic carbon content analyses indicate that most of the beef veins accumulated in calcite-rich laminated shales with high organic matter contents. These beef veins yielded an absolute laser ablation−multi-collector−inductively coupled plasma−mass spectrometry U-Pb age of ca. 41.02 ± 0.44 Ma, which corresponds to a burial depth of 500−800 m. Such a shallow burial depth suggests that the full compaction and consolidation of sediments would not yet have been achieved, which is compatible with the following observations: (1) plastic deformation of shale laminae adjacent to the veins, and (2) a beef vein formation temperature of ∼59 °C derived from fluid-inclusion microthermometry. The radio-isotopic age of the beef veins is ∼1−3 m.y. younger than the stratigraphic age of the host rock (ca. 43.1 Ma) but earlier than the model-derived timing of oil generation (ca. 35.8 Ma) and tectonic extrusion (ca. 23.0−13.0 Ma). The beef vein formation predated bacterial sulfate reduction, as evidenced by crosscutting relationships with carbonate concretions, pyrite framboids, and apatite pellets. A two-stage formation model for these beef veins is proposed. When burial depth of laminated shales rich in organic matter and calcite reaches the methanogenic zone, overpressure triggered by biogenetic gas generation results in horizontal hydrofracturing, initiating cracks that act as gas expulsion pathways. Once all the generated gas has migrated, the opened fractures close again due to overburden load. The materials fed by pressure solution of host-rock calcite fractions then mobilized into the unhealed horizontal fractures by diffusion. Subsequently, by a force of crystallization, antitaxial, displacive growth of calcite fibers commenced, contemporaneous with fracture dilation, eventually leading to the formation of bedding-parallel beef veins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.