Abstract

Tactile suppression refers to the phenomenon that tactile signals are attenuated during movement planning and execution when presented on a moving limb compared to rest. It is usually explained in the context of the forward model of movement control that predicts the sensory consequences of an action. Recent research suggests that aging increases reliance on sensorimotor predictions resulting in stronger somatosensory suppression. However, the mechanisms contributing to this age effect remain to be clarified. We measured age-related differences in tactile suppression during reaching and investigated the modulation by cognitive processes. A total of 23 younger (18-27 years) and 26 older (59-78 years) adults participated in our study. We found robust suppression of tactile signals when executing reaching movements. Age group differences corroborated stronger suppression in old age. Cognitive task demands during reaching, although overall boosting suppression effects, did not modulate the age effect. Across age groups, stronger suppression was associated with lower individual executive capacities. There was no evidence that baseline sensitivity had a prominent impact on the magnitude of suppression. We conclude that aging alters the weighting of sensory signals and sensorimotor predictions during movement control. Our findings suggest that individual differences in tactile suppression are critically driven by executive functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call