Abstract

Ketamine has been abused as a psychedelic agent and causes diverse neurobehavioral changes. Adolescence is a critical developmental stage but vulnerable to substances and environmental stimuli. Growing evidence shows that ketamine affects glutamatergic neurotransmission, which is important for memory storage, addiction, and psychosis. To explore diverse biological responses, this study was designed to assess ketamine sensitivity in mice of different ages and strains. Male C57BL/6J and BALB/c mice were studied in adolescence and adulthood separately. An open field test assessed motor behavioral changes. After a 30-min baseline habituation, mice were injected with ketamine (0, 25, and 50 mg/kg), and their locomotion was measured for 60 min. Following ketamine injection, the travelled distance and speed significantly increased in C57BL/6J mice between both age groups (p < 0.01), but not in BALB/c mice. The pattern of hyperlocomotion showed that mice were delayed at the higher dose (50 mg/kg) compared to the lower dose (25 mg/kg) of ketamine treatment. Ketamine accentuated locomotor activation in adolescent C57BL/6J mice compared to adults, but not in the BALB/c strain. Here, we show that ketamine-induced locomotor behavior is modulated by dose and age. The discrepancy of neurobehaviors in the two strains of mice indicates that sensitivity to ketamine is biologically determined. This study suggests that individual vulnerability to ketamine's pharmacological responses varies biologically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.