Abstract

Age-related declines in spatial navigation are well-known in human and non-human species. Studies in non-human species suggest that alteration in hippocampal and other neural circuitry may underlie behavioral deficits associated with aging but little is known about the neural mechanisms of human age-related decline in spatial navigation. The purpose of the present study was to examine age differences in functional brain activation during virtual environment navigation. Voxel-based analysis of activation patterns in young subjects identified activation in the hippocampus and parahippocampal gyrus, retrosplenial cortex, right and left lateral parietal cortex, medial parietal lobe and cerebellum. In comparison to younger subjects, elderly participants showed reduced activation in the hippocampus and parahippocampal gyrus, medial parietal lobe and retrosplenial cortex. Relative to younger participants elderly subjects showed increased activation in anterior cingulate gyrus and medial frontal lobe. These results provide evidence of age specific neural networks supporting spatial navigation and identify a putative neural substrate for age-related differences in spatial memory and navigational skill.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.