Abstract

The absorption, distribution, metabolism, and excretion of volatile organic compounds (VOCs) are critically determined by a few chemical-specific factors, notably their blood and tissue partition coefficients (PC) and metabolism. Age-specific values for PCs in rats have rarely been reported or utilized in pharmacokinetic modeling for predicting dosimetry in toxicity studies with rats progressing through their lifestages. A mixture of six VOCs (benzene, chloroform, methyl ethyl ketone, methylene chloride, trichloroethylene, and perchloroethylene) was used to determine blood:air and tissue:air PCs in rats at three different ages (postnatal d 10, 60 d, and 2 yr) and blood:air PCs in pediatric and adult human blood. No differences with age in human blood:air PCs for the six compounds were observed. Rat blood:air PCs increased with age varying with compound. Tissue:air PCs showed tissue-specific changes with age. Water-soluble methyl ethyl ketone showed no age-dependent differences. Partition coefficients, particularly the blood:air PC, are key determinants of the rodent and human blood concentrations; age-appropriate values improve the accuracy of pharmacokinetic model predictions of population variability and age-specific exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.