Abstract

The MET tyrosine kinase has been identified as a susceptibility gene in patients with autism spectrum disorders. MET is expressed in the forebrain during prenatal and postnatal development. After birth, MET participates in dendritic outgrowth and circuit formation. Alterations in neuronal development, particularly in the cerebral cortex, may contribute to the pathology of developmental disorders, including autism. Patients with autism can exhibit abnormal cortical volumes and head circumferences. We tested the hypothesis that impaired Met signaling during development alters forebrain structure. We have utilized a conditional mutant mouse line which expresses a kinase-dead Met restricted to the cerebral cortex and hippocampal structures. In these mice, we have used magnetic resonance imaging (MRI) to analyze the structure of the cerebral cortex and related structures across postnatal development. We found that the rostral cortex, caudal hippocampus, dorsal striatum, thalamus, and corpus callosum were all larger in adult, but not juvenile, mutant mice relative to control mice. The specificity of the changes suggests that aberrant expansion of the forebrain is consistent with continued axonal and dendritic growth, potentially leading to improper circuit formation and maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.