Abstract

Face recognition is the most successful form of human surveillance. Face recognition technology, is being used to improve human efficiency when recognition faces, is one of the fastest growing fields in the biometric industry. In the first stage, the age is classified into eleven categories which distinguish the person oldness in terms of age. In the second stage of the process is face recognition based on the predicted age. Age prediction has considerable potential applications in human computer interaction and multimedia communication. In this paper proposes an Eigen based age estimation algorithm for estimate an image from the database. Eigenface has proven to be a useful and robust cue for age prediction, age simulation, face recognition, localization and tracking. The scheme is based on an information theory approach that decomposes face images into a small set of characteristic feature images called eigenfaces, which may be thought of as the principal components of the initial training set of face images. The eigenface approach used in this scheme has advantages over other face recognition methods in its speed, simplicity, learning capability and robustness to small changes in the face image.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.