Abstract

ABSTRACTMutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS) in humans. ALS is a neurodegenerative disease characterized by progressive motor neuron loss leading to paralysis and inevitable death in affected individuals. Using a gene replacement strategy to introduce disease mutations into the orthologous Drosophila sod1 (dsod1) gene, here, we characterize changes at the neuromuscular junction using longer-lived dsod1 mutant adults. Homozygous dsod1H71Y/H71Y or dsod1null/null flies display progressive walking defects with paralysis of the third metathoracic leg. In dissected legs, we assessed age-dependent changes in a single identified motor neuron (MN-I2) innervating the tibia levitator muscle. At adult eclosion, MN-I2 of dsod1H71Y/H71Y or sod1null/null flies is patterned similar to wild-type flies indicating no readily apparent developmental defects. Over the course of 10 days post-eclosion, MN-I2 shows an overall reduction in arborization with bouton swelling and loss of the post-synaptic marker discs-large (dlg) in mutant dsod1 adults. In addition, increases in polyubiquitinated proteins correlate with the timing and extent of MN-I2 changes. Because similar phenotypes are observed between flies homozygous for either dsod1H71Y or dsod1null alleles, we conclude these NMJ changes are mainly associated with sod loss-of-function. Together these studies characterize age-related morphological and molecular changes associated with axonal retraction in a Drosophila model of ALS that recapitulate an important aspect of the human disease.This article has an associated First Person interview with the first author of the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call